

May - 3 June 2022 Lyon, France

ARIEL & SANDA Nuclear Data Actitivies

C. Franzen¹, A.R. Junghans¹, E. Gonzalez², A.J.M. Plompen³

Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Bautzner Landstrasse 400, D-01328 Dresden, Germany
 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)
 Avda. Complutense, 40, 28040 Madrid – Spain
 European Commission Joint Research Centre – JRC Retieseweg 111, B-2440 Geel/Belgium

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

Accelerator and Research reactor Infrastructures for Education and Learning

SANDA

Supplying Accurate Nuclear Data for energy and non-energy Applications

ARIEL factsheet

Grant agreement ID: 847594

Funded under:

H2020-Euratom-1.8 (NFRP-2018-7)

EC budget contribution: Coordinated by:

2 M€ HZDR Project type: Partners:

Coordination & Support Action 25 from 15 countries

Project duration: Start /End date:

54 months September 1, 2019 – **February 29, 2024**

Management Board (MB):

A. Junghans (HZDR), A. Plompen (JRC), R. Nolte (PTB), C. Guerrero (USE), H. Penttilä (JYU) **Project Advisory Committee (PAC):**

D. Cano-Ott (CIEMAT), R. Capote (IAEA), R. Jacqmin (CEA), M. Kerveno (CNRS), G. Van den Eynde (SCK*CEN)

CORDIS

Accelerator and Research reactor Infrastructures for Education and Learning

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

Horizon 2020 European Union funding for Research & Innovation

Accelerator and Research reactor Infrastructures for Education and Learning

www.ariel-h2020.eu

ARIEL Objectives

Provide young scientists, researchers and experts with access to high quality nuclear research and training facilities. Experiments in international teams: Hands-on training for students in the graduate and postgraduate level - lead to PhD and master theses.

- Integration of the full nuclear data cycle by collaboration with JEFF (OECD/NEA), IAEA, and TSO's e.g. IRSN
- Collaboration with research reactor facilities MTK-EA, JGU, SCK*CEN, ILL, CVR
- Increase number of students in the nuclear data field; especially with the help of ENEN
- Increase support for early stage researchers
- Inclusion of technical staff (engineers, operators) in ARIEL activities

Accelerator and Research reactor Infrastructures for Education and Learning

		ACCELERATORS																							
SUMMARY OF H2020-ARIEL FACILITIES AVAILABLE FOR TAA		e ⁻ BEAMS		ION BEAMS															RESEARCH REACTORS						
		nELBE@HZDR	GELINA@JRC	MONNET@JRC	n_TOF@CERN	AIFIRA@CNRS	ALTO@CNRS	GENESIS@CNRS	NFS@GANIL	CEA-DAM	FNG@ENEA	PTB	FNG@NPI	HISPANOS@CNA	NESSA@UU	U. Oslo	NPL	IFIN-HH	JYU	AMANDE@IRSN	BRR@MTA-EK	BR1@SCK·CEN	TRIGA@JGU	LR-0/LVR- 15@CVR	RHF@ILL
	Cold (<25 meV)																								
	Thermal (<e<sub>n>=25 meV)</e<sub>																								
Neutrons	Epithermal (25 meV – 100 keV)																								
	Fast (0.1-20 MeV)																								
	Very fast (>20 MeV)																								
	Pulsed beam																								
	Time-of-flight																								
Charged particles																									
R	Radioactive beam																								

Accelerator and Research reactor Infrastructures for Education and Learning

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

Status

- Education and Training: 195 weeks endorsed in 25 proposals
 8 visits (78 weeks) completed
 - 45 weeks available
- Transnational access to neutron beam facilities:
 - 1433 beam time hours endorsed after PAC 5 for 17 experiments
 - 596 hours delivered (7 experiments)
- COVID has restricted the transnational access and Education and training activities. The visits of early stage researchers were resumed. The experiments still have to catch up.

ARIEL schools

2/2022 @CIEMAT, Madrid, Spain

Nuclear data: the path from the detector to the reactor calculation

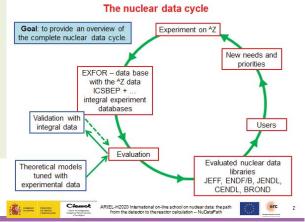
(24 participants) https://agenda.ciemat.es/event/3201/

9/2022 @CNA, Seville, Spain

Hands-on school on the production, detection and use of neutron beams

(18-24 participants)

10/2023 @JGU, Mainz, Germany


Lab course in Reactor Operation and Nuclear Chemistry

(10 participants)

6/2023 @University of Uppsala (Sweden)

EXTEND'2023 summer school

(25 participants)

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 \mid Lyon, France

(

SANDA

SUPPLYING ACCURATE NUCLEAR DATA FOR ENERGY AND NON-ENERGY APPLICATIONS

H2020 Grant Agreement number: 847552

A project for the EURATOM WP2018 for NFRP-2018-4

Project Start date: 01/09/2019

Duration: 48 months

Requested contributions: 3.5 MEuros

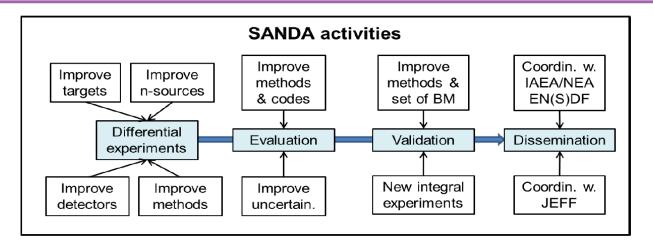
35 Partners: CIEMAT, Atomki, CEA, CERN, CNRS, CSIC, CVREZ, ENEA,

HZDR, IFIN-HH, IRSN, IST-ID, JRC, JSI, JYU, KIT, NPI, NPL, NRG, NTUA, PSI, PTB, SCK-CEN, Sofia, TUW, UB, ULODZ,

UMAINZ, UMANCH, UOI, UPC, UPM, USC, USE, UU.

from 18 countries (Au, Be, Bu, Cz, Fi, Fr, Ge, Gr, Hu, It, Ne, Pol, Por, Ro, Sln,

Sp, Sw, UK)

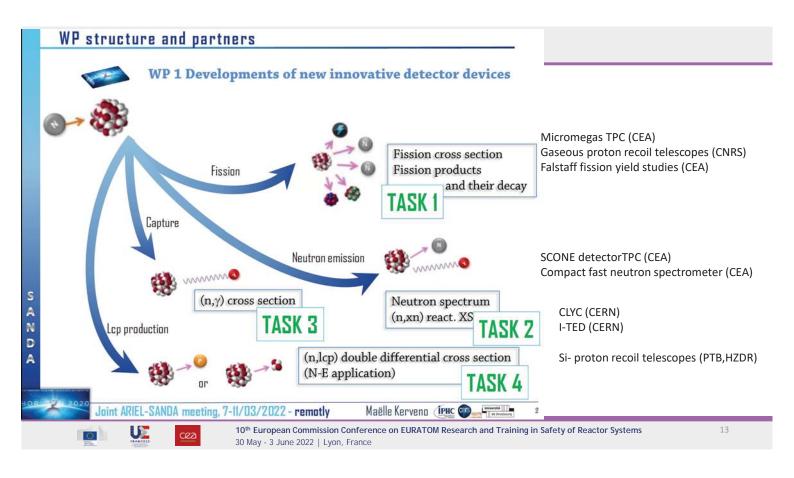

Coordinator: CIEMAT

SANDA activities

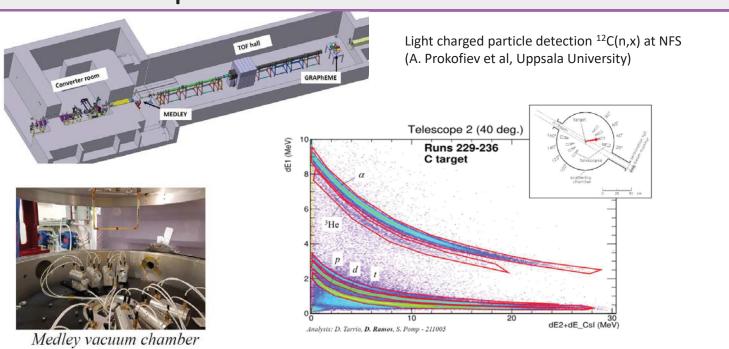
- Relevant experiments for microscopic nuclear data improvement of nuclear safety
- Full nuclear data cycle: Nuclear data evaluation and validation
- NEA/OECD and IAEA high priority lists

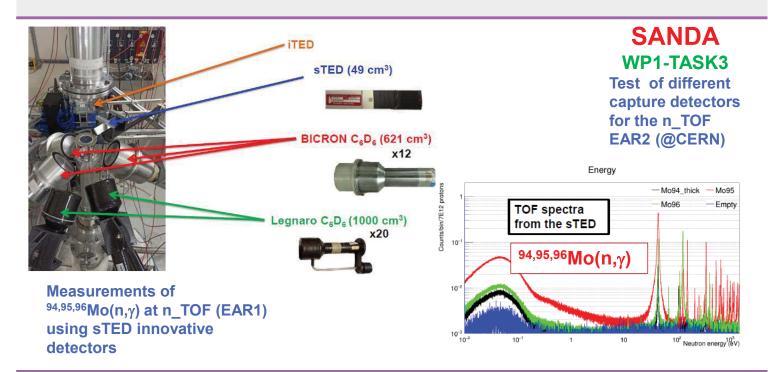
10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

1


Nuclear data measurements

- average neutron multiplicity of ²³⁵U(n,f) and the fission cross sections of the ²³⁰Th(n,f),
 ²⁴¹Am(n,f) and ²³⁹Pu(n,f) reactions;
- neutron capture cross sections of the 239 Pu(n, γ) and 92,94,95 Mo(n, γ) reactions;
- neutron elastic and inelastic scattering and neutron multiplication cross sections for the nuclides ¹⁴N, ^{35,37}Cl, ²⁰⁹Bi, ²³³U, ²³⁸U and ²³⁹Pu;
- **decay data** of ⁹⁵Rb, ^{100gs}Nb, ^{102m}Nb, ¹⁰³Tc, ¹⁴⁰Cs with Total Absorption Gamma-ray spectrometry and of ¹⁰⁶Ru, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁸⁶Re, ²¹²Pb, ²²⁵Ac and ²²³Ra half-lives and branching ratios for reactor and medical applications;
- **fission yields** and related distributions from neutron induced fission of ²³⁵U at LOHENGRIN (ILL) and PI-ICR at IGISOL and (p,2p) inverse kinematics fission reactions for ²³⁸U and ²³⁷Pa:
- **spectrum-averaged cross sections** for the 117 Sn(n,inl) 117 mSn and 60 Ni(n,p) reactions in a 252 Cf spectrum for **dosimetry**, 12 C double differential cross sections relevant for hadron therapy and the production cross sections of β + emitters 11 C, 13 N, 15 O, 30 P for protoninduced reactions up to 250 MeV energy (non-energy applications);




First Experiments at Neutrons for Science at GANIL

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

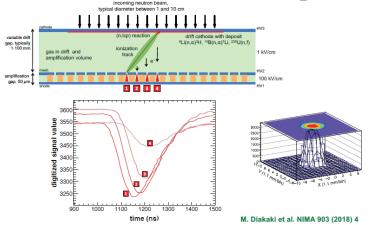
SANDA

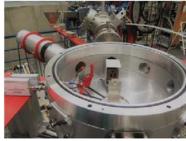
WP1-TASK3

Development of advanced capture detectors

sTED

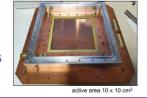
Full i-TED detector completely assembled, commissioned and prepared for first (n,g) experiments in 2022





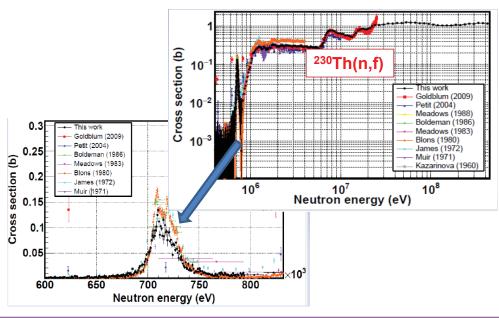
SANDA WP1-TASK 1 & 4

XY-Micromegas and LCP measurements



Scattering chamber from PIAF to n_TOF

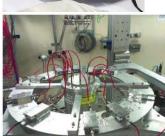
XY-Micromegas

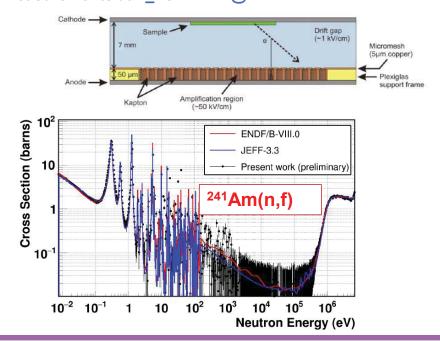


10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

SANDA WP2

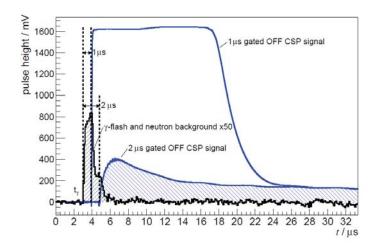
²³⁰Th(n,f) cross-section measurements





SANDA WP2

²⁴¹Am(n,f) cross-section measurements at n_TOF EAR2@CERN



10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

Nanosecond-gating at pulsed radiation sources

Switching detector output to ground to avoid Instantaneous radiation (gamma-flash) at pulsed Radiation sources.

- → Sensitivity greatly increased for later neutroninduced signals for time-of-flight measurements
- --- directly measured current (no preamplifier)
- --- Charge sensitive preamplifier output. Input grounded for 1 or 2 microseconds.

Sebastian Urlass et al., Nuclear Instruments and Methods in Physics Research A 1002, p. 165297, 2021

Conclusions

- ARIEL and SANDA support the measurement, evaluation and validation of nuclear data that will
 improve the safety of present reactors and improve the precision and efficiency of the new
 advanced reactor and fuel cycles designs and of the applications of nuclear technologies.
- Response to the high priority request list of nuclear data (HPRL) collected by the international organizations IAEA and NEA/OECD from inputs and discussions with nuclear data users and producers.
- About 6 to 12 months delays accumulated due to COVID still both projects have already achieved significant results to develop and improve detectors, commission new neutron sources, perform some new measurements, and to improve the tools and environment for evaluation and validation.

